
www.manaraa.com

Simple Data Storage and Manipulation For Scientists

Charles Noneman Leonard McMillan

Abstract

When choosing a data management system, scientists are forced to select from using either spreadsheets
or a relational database. However, neither of these systems is both flexible and powerful enough to fulfill
all of a scientist’s needs. We have developed a system that combines the simplicity of table creation and
modification of a classical spreadsheet with the querying power of a full relational database. This system
allows users to simply and efficiently input, query, and transform their data.

1 Introduction

Scientists are faced with a difficult trade-off regard-
ing data management. This trade-off is between
the two most common approaches to data manage-
ment: spreadsheets and databases. Spreadsheets are
very flexible, but lack the querying capabilities of a
database. A database has powerful querying mecha-
nisms and consistency guarantees, but is bound by a
rigid schema.

A spreadsheet is a group of cells organized on a
grid. Each cell can contain data; typically in the
form of strings, numbers, dates, and formulas. Cells
are addressed by their column number, in practice
represent by a letter, and their row number. Scien-
tists, for the most part, are familiar with spreadsheets
and are comfortable using them to store data and to
do basic analysis.

Typically no data management system is in place
at the start of a project, so members of a group will
each create ad hoc spreadsheets to store the data for
their portion of the experiment. This leads to many
difficulties and complications as the project continues
and as the team tries to analyse their data. One risk
of using spreadsheets is the possibility of data loss or
corruption. If one of the files is accidentally deleted
or incorrect data is written, there is no way to re-
cover the information. Another problem is access to
the spreadsheets. Teams often email sheets between
members, or put the sheets on shared drives. The
time and coordination required for this form of com-

munication, combined with the lack of atomic trans-
actions, means that data is only shared at the end
of the experiment and that the integrity of the data
is likely compromised. A better system would al-
low researchers to query and reorganise data as it is
generated so preliminary analysis can begin imme-
diately and inconsistencies and missing data can be
found and resolved before they are impossible to cor-
rect. Another problem with the many-spreadsheets
approach is that someone must merge and factor the
sheets by hand. This is a time consuming and error
prone process. In addition to errors generated by lost
columns or copying mistakes, the sheets themselves
contain implicit information, such as batch numbers
or the dates of experiments, which is destroyed in the
combining process. Even if all of these issues are ad-
dressed by a data management process and discipline
on the part of the users, such as the process described
in [6], the lack of proper joining and querying mech-
anisms in spreadsheet systems means that the data
will need to be imported into a database eventually.

A relational database is collection of relations,
commonly called tables. A relation has a fixed set of
attributes and domain descriptions called a schema.
A relation also has a set of tuples which are used
to store data and all share the same attributes. At-
tributes are commonly called columns and tuples are
commonly called rows. When designing a relational
database, one strives to represent the data in a nor-
mal form. Normal form for relational data is a group
of schemas where no data is replicated. This is im-

1

www.manaraa.com

portant for efficiency and crucial for maintaining data
consistency. Most relational databases systems are
accessed via a query language, of which Structured
Query Language, or SQL, is the most common.

Like the spreadsheet approach to data storage, an
approach based on a relational database system also
does not fit the needs of scientists. Databases are
more difficult to use than spreadsheets. Users lack
the training in database theory to generate schemas
in normal form and to write queries in SQL. This
results in a need to hire someone to handle the
database’s design. This person will first have to de-
sign the database schemas and then provide an in-
terface for the researchers to use. This is the normal
approach to database design and is called schema-
first [7], since the schema is completely or mostly de-
signed before any data is entered. Schema-first design
assumes that the nature of the data is known a priori,
but this is not often the case for real world projects.
In the event that the researchers decide to run a new
experiment, or simply want to add a new measure-
ment to an existing experiment, the database schema
no longer meets their needs. Users will need to re-
purpose an existing attribute to fit their new needs
or they will be forced to contact the database admin-
istrators to perform the appropriate change in the
schema. Additionally, if the researchers want to look
at the data in a new way, they must have the adminis-
trators write a new query before they can begin their
new analysis. In practice there will be enough of these
changes to the nature of the project that database ad-
ministrators must be retained for the entirety of the
project. Also, these changes take time, so users may
revert to spreadsheets for everyday use, bringing all
of the problems associated with spreadsheets into the
system. Actively maintaining the schema in this way
is both inefficient and expensive.

Since the schema often cannot be determined be-
fore data collection has started and updating the
schema is challenging and fails to keep up with users’
needs, it may be tempting to construct a database
after the data is collected. This approach is called
schema-later [3]. By using spreadsheets during data
collection, researchers have the flexibility they want,
and by then loading this data into a database, they
will get the querying power of a relational database.

The failing of this approach is the enormous task
of converting the data into a form suitable for a
database.

There are many issues with data stored in a spread-
sheet and many of them are difficult to resolve.
Spreadsheet users will often put data of incorrect type
into columns. For example, “NA” into a column of
real numbers. Dealing with these situations must
cause either an over general typing strategy, such
as making everything strings, or result in lost data.
Users will include decorative information into a sheet
such as a title or empty rows and columns. These
must be removed before an import can occur. Users
will include statistics in the bottom rows of a table,
such as sums and averages, which must be removed.
Since users lack a joining mechanism, they will create
separate columns for a repeated measurement, such
as “Weight 4/8/2010” and “Weight 4/22/2010”, in-
stead of putting these into a new table. This type
of data must be transformed by hand or by writing
code to parse the sheet, convert the data, and save
the resulting sheets. Many of the design issues in
spreadsheets come from one-to-many and many-to-
many relationships, such as the repeated measure-
ment issue. These relationships are difficult to create
in a spreadsheet and, in the many-to-many case, are
difficult for users to understand since a table must
represent a relationship and not just an entity. The
process of converting from spreadsheet to database
can easily become more work than actively maintain-
ing the schema of a database.

There are some partial solutions to these problems.
Online spreadsheets facilitate sharing of information
between users and provide access to old versions of
the spreadsheet, but combining and querying sheets
remains a challenge. Visual databases ease the cre-
ation of queries[1], but still require an understanding
databases and do little to aid in database design. In
particular a user who has no database training is un-
likely to store data in a normal form, even with visual
tools. Additionally, schema rigidity is not solved by
visual tools. Database usability is an active area of
research[3].

In this paper, we provide a description of a system,
called S3, that is as simple to use as a spreadsheet,
but also has the full power of a relational database.

2

www.manaraa.com

This system allows each researcher to produce ta-
bles and run queries that are easy to create, use,
and change. By giving researchers the power man-
age their own data, they can easily keep the schema
and queries up-to-date and applicable to their cur-
rent needs. Importantly, the system is always usable
as a relational database with a changing schema, in-
cluding the full expressive power of SQL. This form
of technique is called schema-during [7].

The system is accessed using a web interface, Fig-
ures 1 and 2. Having the database online ensures
that users are always able to access their and other’s
information. Additionally, data can be entered di-
rectly into the database, which avoids a typical–time
consuming and error prone–approach of writing data
by hand, entering it into a spreadsheet, merging the
spreadsheet with other spreadsheets, transforming
the data, and loading the final sheet into a database.

Despite the flexibility in S3, users are encouraged
and helped to convert their data into a more database
appropriate form. For example, if the type of a col-
umn is set to an integer, any cells that are not in-
tegers are highlighted in red. By having an efficient
and easy to use querying mechanism, users are more
open to storing data in separate tables, unlike their
tendency to want to force data into one large sum-
mary sheet. By including statistics for columns and
allowing aggregate functions in queries, users will not
need to clutter the sheet by filling cells with that type
of summary information.

The system is designed with a cell-centric ap-
proach, which allows for much of the flexibility seen
in spreadsheets. This approach also enables the sys-
tem to maintain cell history, which allows for users
to recover historical information and find when it was
entered. Since all of the data is stored in a relational
database, the full power of the existing joining and
querying system is always available.

S3 provides a “gentle slope” approach to database
design. It enables the transitions from data col-
lection, to organization, to reorganization and to
the transparent creation of a full-fledged relational
database.

2 Related Work

Researchers have been developing user-friendly
querying mechanisms for nearly as long as there have
been databases. Query by Example [12] was one of
the first. It involved users filling in example values
into columns to serve as placeholders for the values
in the tuples that the database would return. Visual
Query Engines, of which [1] is an example, show a
digram of the schema of the relations and draw lines
between the relations to represent foreign keys. These
systems still require the user to create the query in
SQL, or may support simple queries using a point-
and-click interface. Liu et al. [4] describe an iter-
ative querying mechanism which is displayed like a
spreadsheet.

Combinations of spreadsheets and databases have
been proposed before. Tyszkiewicz [9] describes a
method for translating SQL statements into equa-
tions in a spreadsheet. Query by Excel [11] translates
spreadsheets into a database. The data from cells is
stored similarly to the way that S3 stores cells and
the functions are translated using an extended SQL
syntax described in [10].

While previous work has focused on well designed
databases in normal form, S3 is designed to address
data input, querying, and manipulation on schema
that may be poorly designed. Although S3 includes
an easy-to-use querying interface and combines the
concepts of spreadsheets and databases, these are
only pieces of the whole. It provides a dynamic, yet
fully functional, schema during the entirety of the
data collection process. Joins, by default, are done
using a method that allows scientists to easily access
all relevant entities without having to consider the
order of the joins. This means that data is simple to
query and that it is easy to find where data is missing
or incomplete. Finally, database refactoring is simple
and is often done transparently for the user.

3 Model

First we will describe S3 from the user’s perspec-
tive. This will demonstrate the capabilities of the
system and further clarify the problems being ad-

3

www.manaraa.com

Figure 1: The hub page. Here, users can access and manage tables, enumerations, and reports.

Figure 2: A typical table containing actual data. Users edit data as they would in a spreadsheet. Attribute
information is edited in the sidebar.

4

www.manaraa.com

dressed. The tasks performed by users are: adding
data, querying that data, and manipulating the data
to be closer to normal form.

3.1 Adding Data

A relational database requires the creation of a
schema before data can be entered into a table. A
schema is a list of the names of all of the columns
and the data-type–number, text, date, etc.–allowed
in each column. Additionally column names must
be unique within the table. Although these require-
ments are good practice, in S3 this information is not
required to create a table. Users may simply put data
into the table and specify column name and type in-
formation later. The system is designed to handle du-
plicate or unnamed columns. Columns are assumed
to store text by default, but this can be changed at
any time. In a relational database, a column’s type
can only be changed if all of the data can immediately
be converted to the new type. S3 always allows the
change to happen and highlights problematic fields in
red. Additionally, extra information can be attached
to a column. This includes units and a full text de-
scription of the column’s contents and intended use.
A typical table is shown in Figure 2.

In addition to standard types, S3 supports enumer-
ation and file uploads cells. An enumeration is a list
of valid values for a column. For example, red, or-
ange, and yellow could be listed as valid colors. Enu-
merations are beneficial since they enforce a standard
nomenclature. Files can be placed in cells just like
data, this allows for images, video, or any file type to
be easily associated with applicable data. Users can
then search for a sample and then simply click on the
file-cell to open the file.

Sometimes files are not merely stored in cells, but
are a source of derived fields. Data needs to be ex-
tracted from these, often machine-generated, files.
These files are handled by uploading them into cells
like normal files. A user with knowledge of the format
writes a filter to process one of these files and asso-
ciates the filter with the column. S3 will run the filter
on all existing files, new files as they are uploaded,
and new versions of files. Each file will result in data
added to the current row or rows of data added to

another table, as specified by the filter.
Since data often exists outside of S3, especially

when converting from an existing project, importing
directly from spreadsheets is supported by S3. Sim-
ple data can be copied and pasted into tables. Ex-
isting workbooks can be uploaded and split into any
number of tables. As with typing into cells, these
methods allow data of incorrect type to be entered
into columns and highlights them in red, so no data
is lost in the importing process.

3.2 Querying Data

The query interface is designed with simplicity in
mind. Users first select which tables to include in
the query. Then, for each table, users select which
column contains data that is equivalent across the
tables. A suggestion is given for a compatible col-
umn for each table based on heuristics, such as col-
umn name, matching data-types, and joins in other
queries. Users can then limit the selected columns to
a subset of the tables’ columns. Additionally users
may add restrictions based on the data. For example
limiting the data to mice born after a certain date.
These queries can be saved as reports. Tables and re-
ports can be exported in Common Separated Value,
CSV, format, so they can be trivially imported into
other applications.

While the report generation interface is designed
to handle common report cases. If more advanced
queries are required, users can write arbitrary SQL
queries based on the tables. All tables and reports
result in actual views in the DBMS.

3.3 Manipulating Data

Most experiments involve a repeating measure of the
same entity under different conditions. For exam-
ple, a mouse’s weight will be measured repeatedly at
different points in its life. In a spreadsheet, a sci-
entist will often create a column for each measure-
ment. These columns might be: “Weight 10/4/10”,
“Weight 10/11/10”, “Weight 10/18/10” or simply:
“Weight 1”, “Weight 2”, “Weight 3”. This is a bad
data-model, for a few reasons. Most crucially, im-
portant information is stored in the column name,

5

www.manaraa.com

where it cannot be accessed in a query. Additionally,
the schema has to change whenever a new measure-
ment is added. In the relational data storage model,
the schema would look like: “Mouse ID”, “Date”,
“Weight” and there would be a row for every time any
mouse was measured. The many-columns method is
commonly used in spreadsheets since users have never
seen the correct way to store this data and even if
they had, the lack of a sophisticated query mecha-
nism would make data in normal form difficult to ac-
cess. Additionally, users find a view with one line per
mouse much easier to read, understand, and perform
input on than one line per mouse-measurement.

To solve this problem, a combination of heuristics
and user selection is used to identify these repeated
measurement columns. Once the system identifies
them, users have the option of viewing this data in
three ways. The first is in the repeated columns that
they entered. The second is a summary view that
compresses the columns into a single column using
an aggregate function such as mean, median, or sum.
The final view has the data converted into the many-
rows form of a database. This is achieved by taking
every cell in the repeated columns and converting it
into a row. This row contains a cell with the data part
of the original column name, for example “10/4/10”,
a cell for the value in the original cell value, and fi-
nally an exact copy of the data in the non-repeated
columns. Giving users access to this data in multiple
forms means that they can interact with their data
in the way that is easiest for the task at hand.

4 System Design

S3 is implemented in a relational DBMS, which gives
S3 and its users access to the querying power of SQL.
Despite storing information in a database, the data-
model is more closely related to a spreadsheet. By
representing the data in manner similar to that of a
spreadsheet, S3 is able to avoid the limitations of a
database. S3 makes cells the focus of the data-model,
instead of tuples like in a database. This allows for
the data in cells to manipulated in ways that are not
possible with a tuple-centric model.

4.1 Schema

The basis of S3 is a representation of a (virtual) table.
By representing a table instead of creating an actual
database table, the system gains significant flexibility.
This flexibility is apparent when considering the most
important of the actual tables, the Cells table, Table
1.

Table 1: Cells Table

Cells
value
attribute id
agglomeration id
created
replaced

Each value in a virtual table has an entry in
the Cells table. Each Cell has a reference to
the Agglomerations table and the Attributes ta-
ble. The Agglomerations table represents the vir-
tual rows. The Attributes table represents the vir-
tual columns and stores the name of the column, the
data-type that the system will use in views, and op-
tionally units or any user notes about the column,
Table 2. These are used to place the cell within a
virtual table.

An advantage of this approach to storing data is
that NULL values take no space. They are stored
implicitly by not having a Cell with a matching
agglomeration id and attribute id. In a tradi-
tional database, NULLs are stored by setting a specific
bit, or possibly even a byte, in the row header.

Table 2: Attributes and Agglomerations Tables

Attributes
id
name
type id
units
notes

Agglomerations
id

6

www.manaraa.com

By storing the user’s input as a string in the value
field, the user’s original input, and thus intention,
can always be recovered. This method allows for the
typing of a column to change without any risk of
permanent information loss. Additionally it allows
users to input data that does not match the column
type, and then correct this mismatch at a later time.

The enumeration and file types are handled slightly
differently. For the file type, when the user uploads
a file, it is stored and a record is added to the Files

table which contains a unique id and some informa-
tion about the file. The id number is stored in the
value field of the appropriate cell. For the enumer-
ation type, the source attribute id is stored in the
referring attribute’s record. The Cells themselves
have the agglomeration id of the wanted cell stored
in value, like a foreign key.

Unlike a traditional schema, entries in the Cells

table are not updated when a user changes a value.
A new entry is placed in the table, with created set
to the current time, and the replaced field of the old
Cell is changed from NULL to the current time. This
maintains the history of the virtual table and allows
for users to see the changes to the table over time.

A few auxiliary tables exist to manage the vir-
tual tables, columns, and rows. The Tables ta-
ble contains the name and creation date of a table.
The Table Columns table is a listing of all of the
Attributes in a given Table and Table Rows is a
list of all of the rows for any Table.

This data-model creates flexibility in not only the
typing of the Cells, but in the location of the
Attributes and Agglomerations. Attributes and
Agglomerations can not only be moved within a ta-
ble, but can be trivially moved to new tables. This
provides a mechanism for schema refactoring, which
is needed keep the schema applicable to current needs
and to move the schema towards normal form.

4.2 Views and Querying

Both the virtual tables and the reports are mani-
fest as views in the DBMS. The view for a Table is
created by first creating a view for each Attribute.
This is created by taking the Cells table and se-
lecting only those cells where replaced is NULL–

to get the current versions of the cells–and the
cells with the requisite attribute id. Only the
agglomeration id and the value, cast as the appro-
priate type, are projected. For the attribute with
id equal to n, this can be stated in relational algebra
as Equation 1.

ρAn(πagglomeration id, value(

σreplaced=NULL, attribute id=n
(Cells))) (1)

The Table view is then created by taking the
Table Rows table, selecting the correct table id,
t, and performing left joins against against each of
the attribute views on agglomeration id. This is
given by the expression in Equation 2.

πagglomeration id(σtable id=t
(Table Rows))

n∈NAn (2)

To preform a query, users select which tables they
want to join and an equivalent column for each of
these tables. Optionally they can specify additional
conditions. Users choose if they want the intersection
of the values in the equivalent columns or the union.
For an intersection an inner join is done between the
views of the selected Tables.

For a union, an SQL statement is constructed that
first takes the union of the equivalent columns and
then does a left join with each of the selected tables.
With C as the set of views of compatible attributes
and T as the set of tables, this yields Equation 3.(⋃

A∈C

πvalue(A)

)
V ∈TV (3)

This produces the report that users expect. In par-
ticular every identifier is included no matter which
Table it was in and each identifier appears only once.
If instead of using the union method a chain of left
joins was used, identifiers that did not appear in the
first Table in the join would not appear in the result.
If a full outer join is used, identifiers that are the
same, but are in Tables that are not directly joined,
will produce two rows if the identifier does not exist
in any one of the intermediary tables.

7

www.manaraa.com

Queries can be saved using a table called
Reports, which stores the name of the Re-
port. Report Wheres, Report Columns, and
Report Tables store the selection criteria, cho-
sen columns, and joined tables respectively.
Report Tables additionally stores if all of the
tables column’s were chosen, as is the default, or if
specific columns were chosen. If all of the columns
were selected and a column is added to the table at
a later date, the report will be updated to include
the new column.

4.3 Repeated Measurement Columns

S3 stores information about repeated-measurement
columns in a table called Attribute Groups.
Attributes in an Attribute Group have a foreign
key to that group. Attribute Group has a name,
used for the name of the data column, and an
instance name, used for the name of the column that
specifies to which measurement the tuple refers.

When generating the view of a table, the
Attribute Groups must be transformed from the
many column form into the form with a measurement
number column and a data column. To achieve this,
each Attribute in the Attribute Group is converted
into a view with column for the agglomeration id,
a column containing the Attribute’s name, and a
column with the values of the Cells. The union of
these tables is generated and this union can be joined
with other Attributes, to create the final Table

view. If G is set of attribute ids specified in the
attribute group and Ai is the relation constructed
in Equation 1, this yields Equation 4.⋃

i∈G

(
Ai × πname(σid=i

(Attributes))
)

(4)

5 Motivating Example

To illustrate S3’s facilities for managing data in a
non-normal form, transitioning data into a more
normal form, and handling a changing schema, we
present an example of data and tasks that benefit
from S3.

Suppose a mom-and-pop movie rental store decides
to start using S3 to manage its checkouts. The owner
creates the Rentals Table, Figure 3. “Customer” is a
string with the customer’s name. “Movie” is a string
that holds the name of the movie. “Due” and “Re-
turned” are dates. “Notes” stores any extra informa-
tion.

Figure 3: Rentals table, as designed by a typical user.

He creates a report by choosing the “Rentals” table
and filtering on “Returned” being empty, Figure 4.
This produces a report of customers with checked-
out movies.

Figure 4: Designing a query to list all users with
checked-out movies.

One day a customer tries to rent more than one
movie at a time. Two new columns, “Movie 2” and
“Movie 3”, are added to allow for up to three movies
to be rented at once. If a customer returns some, but
not all, of her rented movies, this is recorded in the
“Notes” field. Only when all movies are returned is

8

www.manaraa.com

“Returned” updated. The result of this is that the
customers with checked-out movies report continues
to work as expected.

Later, the owner decides that employees are using
different names for for movies and miss-typing movie
names, making search difficult. To solve this, he cre-
ates a table called “Titles” that simply lists all of
the movie titles. He changes the type of the “Movie”
columns in “Rentals” to an enumeration based on the
“Title” column in “Titles”. Internally, the strings
that used to be in the cells are converted to the
agglomeration id of the corresponding row in “Ti-
tles”. The result is that “Rentals” has a foreign key
to “Titles”, but this is transparent to the users. Any
of the fields that are not listed in “Titles”, due to ty-
pos or omission, are highlighted and can be corrected
at any time.

The owner wants to list every time “Titanic” has
been checked out. This is challenging in the current
set-up since movies are listed across three columns.
The owner uses the repeated measurement system to
create a column group of the “Movie” columns. Now
when he goes to make a report, “Movie 1”, “Movie
2”, and “Movie 3” have been replaced by “Movie” on
the list of columns. Now he can easily filter on any
movie.

When the owner started his database, he did not
anticipate that he would need to do more than man-
age a few customers and movies. Since his needs
seemed so basic, he made the table that was the sim-
plest to design and use. The querying mechanism al-
lowed him to quickly query the data without writing
any equations or SQL. The enumeration and repeated
measurement mechanisms begin normalisation of the
schema, without the owner having to manually move
any data.

Future features will expand the data manipulation
abilities of S3. One of the most important for the
movie-rental store owner is the ability to define a
function, that is based on a query, that will gener-
ate values in a column. This will allow him to add
a column to the “Rentals” table for customer iden-
tification numbers which will automatically fill out
the customer name field by looking it up in another
table.

6 Future Work

S3 is already being used by a group of biologists to
manage their data, but there are several new features
that are planned for the future.

First, enumerations will be expanded to allow for
synonyms. Synonyms are alternate terms that can
be used to set an enumeration. For example, “alb”
could be set as a synonym for “albino”. Cells contain-
ing either term would be set to the same key. These
would primarily be used to expedite the process of
converting a string column into an enumeration col-
umn, but could also be used to allow users to input
legacy terminology or abbreviations. These would
likely be implemented using the repeated measure-
ment subsystem. Synonyms would appear as entries
in columns, “Synonym 1”, “Synonym 2”, etc., and
these would be transformed into a table suitable for
mapping. Synonyms would be another feature help
users evolve their data towards a normal form.

One of the biggest problems with SQL is that users
must write an entire query without seeing any inter-
mediate results. This violates the principle of direct
manipulation [8], which dictates that users should
have a visual representation of the object they are
interacting with and should be able to make incre-
mental changes to the object. Since S3’s querying
mechanism provides a guess for the joins, the query
can be evaluated and presented to the user after each
manipulation by the user. This would simply require
submitting the partially completed form to the server
and returning the current result.

Adding equations will make S3 more like a spread-
sheet. Users should be able to define a column that is
generated by some function applied to other columns.
These functions could be based on another table. For
example, a user could have a column of DVD iden-
tification numbers which would populate a column
of movie titles by finding the title in another table.
These join-based functions could also work in reverse:
entering the movie title would result in a drop-down
list of valid ids.

Records of the dependencies between columns and
between cells, that result from functions, will be
stored in order to update values after a change of
arguments. Dar et al. [2] analyse the performance

9

www.manaraa.com

of various partial transitive closure algorithms for
databases. One such algorithm would be needed to
efficiently find the set of cells that need updating.

Inferring functional dependencies is the next step
in helping users normalize their schema. Some func-
tional dependencies will be obvious from the equation
system, but many will be implicit in the data. Most
users will not have the experience or the willingness
to even confirm potential functional dependencies, so
this process must be handled entirely by the system.
Dep-Miner [5] is one such algorithm.

Finally, the virtual tables which are currently views
in the DBMS could be materialized. The view would
simply be replaced with an actual table. The system
would have to update the table as well as the Cells,
but this is simple to manage since S3 is aware of all
of the changes. This takes more space, but is much
faster since no joins are needs to construct that table.
Most importantly, indexes can then be built on the
columns that are used in joins that generate reports.
This would likely be used for tables that have many
rows or have not changed schema in a long time.

7 Conclusions

Data-management is an enormous task facing any
project today. The flexibility of a spreadsheet is
wanted and needed by most users, but ultimately re-
sults in data that is not structured enough to perform
real queries on. Databases have the capability to per-
form joins and queries, but require too much training
for the average user. S3 exists to bridge the gap be-
tween these two methods by achieving two goals. The
first goal is to allow users to input data in an irregu-
lar form and, over time, easily convert that data into
normal form. The second is to allow a schema to
evolve over long periods of time, since these changes
are a fundamental part of the data being managed.

Users do not naturally create spreadsheets in nor-
mal form not only because they do not know how,
but because spreadsheets in normal form are often
too fine-grained and unnatural to interact with. By
providing users with a querying mechanism that is al-
ways available, the need to repeat data across differ-
ent tables is greatly diminished. Despite these gains,

users will still generate tables that do not have good
design, whether due to inexperience or due to chang-
ing needs. The repeated measurement subsystem al-
lows for users to correct one of these common design
mistakes and still input data as though the data had
not been transformed.

By designing the system with a focus on cells,
changing a schema involves no moving or deleting
of data. Storing user input as a string and casting it
when types are beneficial means that users are free
to delay design decisions and make mistakes while
the system can still sort and search correctly and ef-
ficiently.

S3 provides a gentle slope for users to enter their
data in a way that is natural to them and, over time,
to evolve that data into a well-structured database,
while having full access to a dynamic schema at each
step.

References

[1] Steven S. Curl, Lorne Olfman, and John W.
Satzinger. An investigation of the roles of indi-
vidual differences and user interface on database
usability. The Database for Advances in Infor-
mation Systems, 29(1):50–65, 1998.

[2] Shaul Dar and Raghu Ramakrishnan. A per-
formance study of transitive closure algorithms.
SIGMOD Rec., 23:454–465, May 1994.

[3] H. V. Jagadish, Adriane Chapman, Aaron
Elkiss, Magesh Jayapandian, Yunyao Li, Arnab
Nandi, and Cong Yu. Making database sys-
tems usable. In SIGMOD ’07: Proceedings of
the 2007 ACM SIGMOD international confer-
ence on Management of data, pages 13–24, New
York, NY, USA, 2007. ACM.

[4] Bin Liu and H.V. Jagadish. A spreadsheet al-
gebra for a direct data manipulation query in-
terface. In Data Engineering, 2009. ICDE ’09.
IEEE 25th International Conference on, pages
417–428, April 2009.

[5] Stphane Lopes, Jean-Marc Petit, and Lotfi
Lakhal. Efficient discovery of functional de-

10

www.manaraa.com

pendencies and armstrong relations. In Ad-
vances in Database Technology – EDBT 2000,
volume 1777 of Lecture Notes in Computer Sci-
ence, pages 350–364. Springer Berlin / Heidel-
berg, 2000.

[6] Boaz Ronen, Michael A Palley, and Henry C. Lu-
cas, Jr. Spreadsheet analysis and design. Com-
mun. ACM, 32:84–93, January 1989.

[7] Nick Roussopoulos and Dimitris Karagiannis.
Conceptual modeling: Past, present and the
continuum of the future. In Conceptual Model-
ing: Foundations and Applications, volume 5600
of Lecture Notes in Computer Science, pages
139–152. Springer Berlin / Heidelberg, 2009.

[8] Ben Shneiderman. The future of interactive
systems and the emergence of direct manipu-
lation. Behaviour & Information Technology,
1:237–256, 1982.

[9] Jerzy Tyszkiewicz. Spreadsheet as a relational
database engine. In Proceedings of the 2010 in-
ternational conference on Management of data,
SIGMOD ’10, pages 195–206, New York, NY,
USA, 2010. ACM.

[10] Andrew Witkowski, Srikanth Bellamkonda,
Tolga Bozkaya, Gregory Dorman, Nathan Folk-
ert, Abhinav Gupta, Lei Shen, and Sankar Sub-
ramanian. Spreadsheets in rdbms for olap. In
Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, SIG-
MOD ’03, pages 52–63, New York, NY, USA,
2003. ACM.

[11] Andrew Witkowski, Srikanth Bellamkonda,
Tolga Bozkaya, Aman Naimat, Lei Sheng,
Sankar Subramanian, and Allison Waingold.
Query by excel. In Proceedings of the 31st in-
ternational conference on Very large data bases,
VLDB ’05, pages 1204–1215. VLDB Endow-
ment, 2005.

[12] Moshé M. Zloof. Query by example. In Proceed-
ings of the May 19-22, 1975, national computer
conference and exposition, AFIPS ’75, pages
431–438, New York, NY, USA, 1975. ACM.

11

